24 research outputs found

    Boredom and Distraction in Multiple Unmanned Vehicle Supervisory Control

    Get PDF
    Operators currently controlling Unmanned Aerial Vehicles report significant boredom, and such systems will likely become more automated in the future. Similar problems are found in process control, commercial aviation, and medical settings. To examine the effect of boredom in such settings, a long duration low task load experiment was conducted. Three low task load levels requiring operator input every 10, 20, or 30 minutes were tested in a our-hour study using a multiple unmanned vehicle simulation environment that leverages decentralized algorithms for sometimes imperfect vehicle scheduling. Reaction times to system-generated events generally decreased across the four hours, as did participants’ ability to maintain directed attention. Overall, participants spent almost half of the time in a distracted state. The top performer spent the majority of time in directed and divided attention states. Unexpectedly, the second-best participant, only 1% worse than the top performer, was distracted almost one third of the experiment, but exhibited a periodic switching strategy, allowing him to pay just enough attention to assist the automation when needed. Indeed, four of the five top performers were distracted more than one-third of the time. These findings suggest that distraction due to boring, low task load environments can be effectively managed through efficient attention switching. Future work is needed to determine optimal frequency and duration of attention state switches given various exogenous attributes, as well as individual variability. These findings have implications for the design of and personnel selection for supervisory control systems where operators monitor highly automated systems for long durations with only occasional or rare input.This work was supported by Aurora Flight Sciences under the ONR Science of Autonomy program as well as the Office of Naval Research (ONR) under Code 34 and MURI [grant number N00014-08-C-070]

    Enantioselective Organocatalysis Using SOMO Activation

    Get PDF
    The asymmetric α-addition of relatively nonpolar hydrocarbon substrates, such as allyl and aryl groups, to aldehydes and ketones remains a largely unsolved problem in organic synthesis, despite the wide potential utility of direct routes to such products. We reasoned that well-established chiral amine catalysis, which activates aldehydes toward electrophile addition by enamine formation, could be expanded to this important reaction class by applying a single-electron oxidant to create a transient radical species from the enamine. We demonstrated the concept of singly occupied molecular orbital (SOMO) activation with a highly selective α-allylation of aldehydes, and we here present preliminary results for enantioselective heteroarylations and cyclization/halogenation cascades

    Boredom and Distraction in Multiple Unmanned Vehicle Supervisory Control

    No full text
    Operators currently controlling unmanned aerial vehicles report significant boredom, and such systems will likely become more automated in the future. Similar problems are found in process control, commercial aviation and medical settings. To examine the effect of boredom in such settings, a long-duration low-task-load experiment was conducted. Three low-task-load levels requiring operator input every 10, 20 or 30 min were tested in a 4-h study, using a multiple unmanned vehicle simulation environment that leverages decentralized algorithms for sometimes-imperfect vehicle scheduling. Reaction times to system-generated events generally decreased across the 4 h, as did participants' ability to maintain directed attention. Overall, the participants spent almost half of the time in a distracted state. The top performer spent the majority of time in directed and divided attention states. Unexpectedly, the second-best participant, only 1% worse than the top performer, was distracted for almost one-third of the experiment, but exhibited a periodic switching strategy, allowing himself to pay just enough attention to assist the automation when needed. Indeed, four of the five top performers were distracted for more than one-third of the time. These findings suggest that distraction due to boring, low-task-load environments can be effectively managed through efficient attention switching. Future work is needed to determine optimal frequency and duration of attention state switches, given various exogenous attributes, as well as individual variability. These findings have implications for the design of and personnel selection for supervisory control systems where operators monitor highly automated systems for long durations with only occasional or rare input.United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014-08-C-070

    Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon gamma.

    No full text
    Using the murine colon adenocarcinoma C-26 cell line, engineered to release granulocyte colony-stimulating factor (G-CSF) (C-26/G-CSF), were studied the mechanisms responsible for inhibition of tumor take in syngeneic animals and of regression of an established tumor in sublethally irradiated mice injected with these cells. Immunocytochemistry and in situ hybridization, performed to characterize tumor-infiltrating leukocytes and their cytokine expression, respectively, indicated that polymorphonuclear leukocytes (PMN) were the major cells responsible for inhibition of tumor take and that they expressed mRNA for interleukin 1 alpha (IL-1 alpha), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha). Expression of interferon gamma (IFN-gamma) and of IL-4 was undetectable, consistent with the absence of T lymphocytes at the site of tumor injection. In mice injected with C-26/G-CSF cells after 600-rad irradiation, the tumors grew to approximately 1.5 cm in 30 d, regressing completely thereafter in 70-80% of mice. During the growing phase, tumors were infiltrated first by PMN (between days 15 and 20), then by macrophages, and last by T lymphocytes. Both CD4+ and CD8+ T cells were present but only CD8 depletion significantly abrogated tumor regression. Depletion of PMN by the RB6-8C5 antigranulocytes monoclonal antibody reduced the number of T cells infiltrating the tumor and prevented tumor regression. In situ hybridization performed at the beginning of tumor regression revealed the presence of mRNA for IL-1 alpha, IL-1 beta, and TNF-alpha, but also the presence of cells, with lymphoid morphology, expressing IFN-gamma. Tumors from mice treated with recombinant IFN-gamma (between days 20 and 35) were rejected faster, whereas mice treated with antibodies to IFN-gamma (from day 20) died of progressive tumor. Cyclosporin A treatment (started at day 20) also abrogated tumor regression. These results indicate that inhibition of tumor take and regression in this model occurs through different mechanisms that involve PMN and PMN-T cell interactions, respectively, as well as a combination of cytokines that, for tumor regression, require IFN-gamma. Thus, gene transfer of a single cytokine gene such as G-CSF into tumor cells appears to be sufficient to trigger the cascade of cell interactions and cytokine production necessary to destroy a cancer nodule

    Direct and enantioselective α-allylation of ketones via singly occupied molecular orbital (SOMO) catalysis

    No full text
    The first enantioselective organocatalytic α-allylation of cyclic ketones has been accomplished via singly occupied molecular orbital catalysis. Geometrically constrained radical cations, forged from the one-electron oxidation of transiently generated enamines, readily undergo allylic alkylation with a variety of commercially available allyl silanes. A reasonable latitude in both the ketone and allyl silane components is readily accommodated in this new transformation. Moreover, three new oxidatively stable imidazolidinone catalysts have been developed that allow cyclic ketones to successfully participate in this transformation. The new catalyst platform has also been exploited in the first catalytic enantioselective α-enolation and α-carbooxidation of ketones
    corecore